Photo of Sandro Matosevic
Sandro Matosevic
Associate Professor
Phone: 765-494-1400
Fax: 765-494-6545
E-mail: sandro@purdue.edu
Specialization: Cancer immunotherapy, cell-based therapies, immunoengineering, natural killer cells, immuno-oncology, synthetic biology, biopharmaceutical engineering
Education
The Scripps Research Institute - Postdoctoral Training, Chemistry
University College London - PhD, Biochemical Engineering
University College London and Rensselaer Polytechnic Institute - MEng with Study Abroad, Biochemical Engineering
Research

Dr. Matosevic’s research program focuses on developing new immunotherapies for solid tumors using translational tools to reprogram the therapeutic behavior of natural killer cells and their interaction with the tumor microenvironment by combining approaches in cell therapy, gene engineering, immunology and immunoengineering to (1) Overcome immunometabolic suppression of natural killer cell function in the tumor microenvironment via molecular modulation of their function; (2) Enhance natural killer cell anti-tumor immunity by engineering synthetic genetic constructs that can effectively target solid tumors; (3) Engineer novel cryopreservation platforms devoid of DMSO to improve patient safety upon administration of adoptive natural killer cell therapies. 

Lab Members
Shambhavi S. Borde (Graduate Student with Dr. Sandro Matosevic)
Qingshi Chen (PULSe PhD student on rotation w Dr. Matosevic)
Soumyajit Das (Graduate Student with Dr. Sandro Matosevic)
Yuning Liu (PULSe Graduate Student with Dr. Sandro Matosevic)
Carolyn K. Metcalfe (PULSe PhD student on rotation w Dr. Matosevic)
Kumar Rishabh (PULSe Graduate Student with Dr. Sandro Matosevic)
Xinyu (Cynthia) Wu (Graduate Student with Dr. Sandro Matosevic)
Representative Publications

Book Chapter:  Matosevic S. Targeting natural killer cells in cancer immunotherapy. In: Systemic Drug Delivery Strategies, Volume 2: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy, Mansoor Amiji and Lara Milane (Eds), Elsevier, 2022. Chapter 3 pp.63-82

 

Chambers AM, Lupo KB, Wang J, Cao J, Jalal S, Torregrosa-Allen S, Elzey B, Pine SR, Jalal S, Utturkar S, Lanman NA, Bernal-Crespo V, Matosevic S. Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors. 2022, eLife, 11:e73699.

Chambers AM, Wang J, Dao T, Lupo KB, Veenhuis P, Ayers MG, Slivova V, Cohen-Gadol A, Matosevic S. Functional expression of CD73 on human natural killer cells. 2022, Cancer Immunology, Immunotherapy, 1(12):3043-3056.

Mamdani H, Matosevic S, Bilal Khalid A, Durm G, Jalal S. Immunotherapy in Lung Cancer: Current Landscape and Future Directions. 2022, Frontiers in Immunology, 13: 823618

Wang J, Toregrosa-Allen S, Elzey BD, Utturkar S, Atallah Lanman N, Bernal-Crespo V, Behymer MM, Knipp GS, Yun Y, Veronesi MC, Sinn AL, Pollok KE, Brutkiewicz R, Nevel KS, Matosevic S. Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunctional engineered NK cells. 2021, Proceedings of the National Academy of Sciences USA, 118 (45):e2107507118

Lupo K, Moon J, Chambers A, Matosevic S. Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. 2021, Cytotherapy, 23(10):939-952.

Yao X, Matosevic S. Cryopreservation of NK and T cells without DMSO for adoptive cell-based immunotherapy. 2021, BioDrugs, 35(5):529-545.

Yao X, Matosevic S. Chemokine networks modulating natural killer cell trafficking to solid tumors. 2021, Cytokine and Growth Factor Reviews, 59:36-45. https://doi.org/10.1016/j.cytogfr.2020.12.003.

Wang J, Toregrosa-Allen S, Elzey BD, Utturkar S, Atallah Lanman N, Bernal-Crespo V, Behymer MM, Knipp GS, Yun Y, Veronesi MC, Sinn AL, Pollok KE, Brutkiewicz R, Nevel KS, Matosevic S. Tumor-responsive, multifunctional CAR-NK cells cooperate with impaired autophagy to infiltrate and target glioblastoma. 2020, biorxiv.org/content/10.1101/2020.10.07.330043v1.

Dao T, Utturkar S, Atallah Lanman N, Matosevic S. TIM-3 expression is downregulated on human NK cells in response to cancer targets in synergy with activation. 2020, Cancers, 12(9):2417.

Lupo K, Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. 2020, Journal of Hematology & Oncology, 13(76).

Wang J, Matosevic S. Functional and metabolic targeting of natural killer cells to solid tumors. 2020, Cellular Oncology, 43(4):577–600.

Matosevic S. Reprogramming of natural killer cells and their use in immunotherapies of solid tumors. 2020, Immunotherapy, 12(9):605-608.

Yao X, Jovevski JJ, Todd MF, Xu R, Li Y, Wang J, Matosevic S. Nanoparticle-mediated intracellular protection of natural killer cells avoids cryoinjury and retains potent anti-tumor functions. 2020, Advanced Science, 1902938

An S, Ziegler KF, Zhang P, Wang Y, Kwok T, Xu F, Bi C, Matosevic S, Yin P, Li T, Huang F. Axial plane single-molecule super-resolution microscopy of whole cells. 2020, Biomedical Optics Express, 11(1):461-479.

Wang, J., Matosevic, S. NT5E/CD73 as correlative factor of patient survival and natural killer cell infiltration in glioblastoma. 2019, Journal of Clinical Medicine, 8(10), 1526.

Chambers, A., Matosevic, S. Immunometabolic dysfunction of natural killer cells mediated by the hypoxia-CD73 axis in solid tumors. 2019, Frontiers in Molecular Biosciences, 6:60.

Lupo, K., Matosevic, S. Natural killer cells as allogeneic effectors in cancer immunotherapy. 2019, Cancers, 11(6), 769.

Dao, T., Matosevic, S. Immunometabolic responses of natural killer cells to inhibitory tumor microenvironment checkpoints. 2019, Immunometabolism, 2019, 1(1):e190003.

El Assal, R., Abou-Elkacem, L., Tocchio, A., Pasley, S., Matosevic, S., Kaplan, D.L., Zylberberg, C., Demirci, U. Bioinspired preservation of natural killer cells for cancer immunotherapyAdvanced Science, 2019, 6(6):1802045.

Wang, J., Lupo, K., Chambers, A., and Matosevic, S. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cellsJournal for ImmunoTherapy of Cancer, 2018, 6:136

Chambers, A., Wang, J., Lupo, K., Yu, H., Atallah Lanman, N., and Matosevic, S. Adenosinergic signaling alters natural killer cell functional responses. Frontiers in Immunology, 2018, 9:2533.

Chambers, A., Lupo, K., and Matosevic, S. Tumor-microenvironment-induced immunometabolic reprogramming of natural killer cellsFrontiers in Immunology, 2018, 9:2517.

Matosevic, S. Viral and non-viral engineering of natural killer cells as emerging adoptive cancer immunotherapiesJournal of Immunology Research, 2018, Volume 2018, ID 4054815.

Wang, J., and Matosevic, S. Adenosinergic signaling as a target for natural killer cell immunotherapyJournal of Molecular Medicine, 2018, 96(9):903-913.

Wang J, Lupo K, Chambers A, Matosevic S. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. Journal for ImmunoTherapy of Cancer, 2018, 6:136.

Chambers A, Wang J, Lupo K, Yu H, Atallah Lanman N, Matosevic S. Adenosinergic signaling alters natural killer cell functional responsesFrontiers in Immunology, 2018, 9:2533.

Chambers A*, Lupo K*, Matosevic S. Tumor-microenvironment-induced immunometabolic reprogramming of natural killer cellsFrontiers in Immunology, 2018, 9:2517.
*equal contribution

Matosevic S. Viral and non-viral engineering of natural killer cells as emerging adoptive cancer immunotherapiesJournal of Immunology Research, 2018, Volume 2018, ID 4054815.

Wang J, Matosevic S. Adenosinergic signaling as a target for natural killer cell immunotherapyJournal of Molecular Medicine, 2018, 96(9):903-913. *Cover image

Lin-Gibson S, Hanrahan B, Matosevic S, Schnitzler A, Zhang J, Zylberberg C. Points to Consider for Cell Manufacturing Equipment and Components. Cell & Gene Therapy Insights, 2017, 3(10):793-805.

Pasley, Shannon, Zylberberg, Claudia; Matosevic, Sandro. Natural killer-92 cells maintain cytotoxic activity after long-term cryopreservation in novel DMSO-free media. Immunology Letters (2017), 192:35-4.

Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapyGene Therapy, 2017, doi: 10.1038/gt.2017.41.

Zylberberg C and Matosevic S. Bioengineered liposome-scaffold composites as therapeutic delivery systems. Therapeutic Delivery, 2017, 8(6):425-445.

Zylberberg C and Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. 2016, Drug Delivery, 23(9):3319-3329.

Knapinska A, Amar S, He Z, Matosevic S, Zylberberg C, Fields G. Matrix metalloproteinases as reagents for cell isolation. Enzyme and Microbial Technology, 2016,

Matosevic S, Paegel BM. Layer-by-layer cell membrane assembly. Nature Chemistry, 2013, 5:958-963.

Matosevic S. State-of-the-art in the development of microfluidic technology toward the synthesis of artificial cells from giant unilamellar vesicles. BioEssays, 2012, 34(11):992-1001.

Matosevic S, Paegel BM. 2011. Stepwise synthesis of giant unilamellar lipid vesicles on a microfluidic assembly line. Journal of the American Chemical Society, 2011, 133(9):2798-2800.

Matosevic S, Lye GJ, Baganz F. Immobilised enzyme microreactor for the quantification of multi-step bioconversions: Characterisation of a de novo transketolase-omega-transaminase pathway to synthesise chiral amino alcohols. Journal of Biotechnology2011, 155(3):320-329

Matosevic S, Szita N, Baganz F. Fundamentals and applications of immobilized enzyme microreactors. J Chem Tech Biotech.86(3):325-334.

Matosevic S, Lye GJ, Baganz F. Development and characterization of a prototype immobilized enzyme microreactor: Quantification of transketolase kinetics. Biotechnology Progress, 2010, 26(1):118-126.

Matosevic S, Micheletti M, Lye GJ, Baganz F. Quantification of kinetics for en-zyme-catalysed reactions: implications for enzyme diffusional limitations at the 10 ml scale. Biotechnology Letters, 2008, 30(6):995-1000.

Venkiteshwaran A, Heider P, Matosevic S, Bogsnes A, Staby A, Sharfstein S, Belfort G. 2007. Optimized Removal of Soluble Host Cell Proteins for the Recovery of met-Human Growth Hormone Inclusion Bodies from Escherichia coli Cell Lysate Using Crossflow Microfiltration. Biotechnology Progress, 23(3):667-672.

Google Scholar profilehttps://scholar.google.com/citations?user=u0MWS_oAAAAJ&hl=en